Extreme value distributions for nonlinear transformations of vector Gaussian processes
نویسندگان
چکیده
Approximations are developed for the marginal and joint probability distributions for the extreme values, associated with a vector of nonGaussian random processes. The component non-Gaussian processes are obtained as nonlinear transformations of a vector of stationary, mutually correlated, Gaussian random processes and are thus, mutually dependent. The multivariate counting process, associated with the number of level crossings by the component non-Gaussian processes, is modelled as a multivariate Poisson point process. An analytical formulation is developed for determining the parameters of the multivariate Poisson process. This, in turn, leads to the joint probability distribution of the extreme values of the non-Gaussian processes, over a given time duration. For problems not amenable for analytical solutions, an algorithm is developed to determine these parameters numerically. The proposed extreme value distributions have applications in time-variant reliability analysis of randomly vibrating structural systems. The method is illustrated through three numerical examples and their accuracy is examined with respect to estimates from full scale Monte Carlo simulations of vector non-Gaussian processes. c © 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Log-amplitude statistics for Beck-Cohen superstatistics.
As a possible generalization of Beck-Cohen superstatistical processes, we study non-Gaussian processes with temporal heterogeneity of local variance. To characterize the variance heterogeneity, we define log-amplitude cumulants and log-amplitude autocovariance and derive closed-form expressions of the log-amplitude cumulants for χ(2), inverse χ(2), and log-normal superstatistical distributions....
متن کاملExtreme-value distributions and renormalization group.
In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approa...
متن کاملAccurate Approximation to the Extreme Order Statistics of Gaussian Samples
Evaluation of the integral properties of Gaussian Statistics is problematic because the Gaussian function is not analytically integrable. We show that the expected value of the greatest order statistics in Gaussian samples (the max distribution) can be accurately approximated by the expression 0"(0.5264'/"), where n is the sample size and @' is the inverse of the Gaussian cumulative distributio...
متن کاملJune 11, 2006 EXTREME VALUE THEORY FOR SPACE-TIME PROCESSES WITH HEAVY-TAILED DISTRIBUTIONS
Many real-life time series often exhibit clusters of outlying observations that cannot be adequately modeled by a Gaussian distribution. Heavy-tailed distributions such as the Pareto distribution have proved useful in modeling a wide range of bursty phenomena that occur in areas as diverse as finance, insurance, telecommunications, meteorology, and hydrology. Regular variation provides a conven...
متن کاملJuly 3, 2006 EXTREME VALUE THEORY FOR SPACE-TIME PROCESSES WITH HEAVY-TAILED DISTRIBUTIONS
Many real-life time series often exhibit clusters of outlying observations that cannot be adequately modeled by a Gaussian distribution. Heavy-tailed distributions such as the Pareto distribution have proved useful in modeling a wide range of bursty phenomena that occur in areas as diverse as finance, insurance, telecommunications, meteorology, and hydrology. Regular variation provides a conven...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005